Picturing Infection

Whole-animal, light-based imaging of infected small mammals

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

INFECTED IMPLANT: In vivo optical imaging of a titanium bone implant (blue) in a mouse femur combines bioluminescence, fluorescence, and CT imaging. The yellow areas show colocalization of an injected strain of bioluminescent Staphylococcus aureus (red) and fluorescently labeled neutrophils (green), early immune responders to infections. COURTESY OF LLOYD MILLER, MD, PHDEpidemiologists are sleuths who track infections—what causes them and how they spread through a geographical area over time. Another kind of infection sleuth wants to know whether or how infections spread within the living body—as in the case of medical implants that get infected, or tuberculosis that moves from the lungs to other tissues—and whether infection hot spots will succumb to immune-system attack or to drugs over time.

Used most often in mice and other small rodents, in vivo optical imaging “is one really powerful tool to noninvasively monitor infection over time,” says Lloyd Miller, an associate professor of dermatology and orthopedic surgery at Johns Hopkins School of Medicine. Using a mouse orthopedic implant model, his group simultaneously tracks the spread of Staphylococcus aureus and the responses of the animals’ immune cells, such as neutrophils.

The method is powered by new refinements in fluorescent probes and in bioluminescently labeled pathogens. And a number of instruments now allow researchers to merge light-based imaging with other imaging modalities, such as CT scans. With these tools, infectious-disease researchers can probe deeper into the bodies of small animals, examining the effects of pathogens on their hearts and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research