Picturing Infection

Whole-animal, light-based imaging of infected small mammals

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

INFECTED IMPLANT: In vivo optical imaging of a titanium bone implant (blue) in a mouse femur combines bioluminescence, fluorescence, and CT imaging. The yellow areas show colocalization of an injected strain of bioluminescent Staphylococcus aureus (red) and fluorescently labeled neutrophils (green), early immune responders to infections. COURTESY OF LLOYD MILLER, MD, PHDEpidemiologists are sleuths who track infections—what causes them and how they spread through a geographical area over time. Another kind of infection sleuth wants to know whether or how infections spread within the living body—as in the case of medical implants that get infected, or tuberculosis that moves from the lungs to other tissues—and whether infection hot spots will succumb to immune-system attack or to drugs over time.

Used most often in mice and other small rodents, in vivo optical imaging “is one really powerful tool to noninvasively monitor infection over time,” says Lloyd Miller, an associate professor of dermatology and orthopedic surgery at Johns Hopkins School of Medicine. Using a mouse orthopedic implant model, his group simultaneously tracks the spread of Staphylococcus aureus and the responses of the animals’ immune cells, such as neutrophils.

The method is powered by new refinements in fluorescent probes and in bioluminescently labeled pathogens. And a number of instruments now allow researchers to merge light-based imaging with other imaging modalities, such as CT scans. With these tools, infectious-disease researchers can probe deeper into the bodies of small animals, examining the effects of pathogens on their hearts and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo