WIKIMEDIA, NICOLLE RAGER, NATIONAL SCIENCE FOUNDATIONFusing an RNA-editing enzyme to an RNA-targeting Cas protein has enabled researchers to edit specific nucleotides within RNA molecules in human cells. The approach, called RNA Editing for Programmable A-to-I replacement (REPAIR), is described today (October 25) in Science, and has the potential to serve not only as a research tool, but as a temporary correctional therapy for disease-causing mutations, the researchers propose.
“This work is an impressive study from a highly productive research group that suggests the possibility of editing RNA transcripts to alter their coding potential in a programmable manner,” David Liu, a chemical biologist at Harvard University who was not involved in the project, writes in an email to The Scientist. “For applications that are best addressed through a transient change in a target RNA's sequence, this approach has strong potential,” he adds. Liu himself has a report out today in Nature describing specific nucleotide editing of DNA by a similar method.
The CRISPR-Cas9 system—a bacterial antiviral immune mechanism first discovered in Streptococcus thermophilus—is now widely used as a DNA editing technique, wherein the DNA nuclease Cas9 is directed to cut any DNA sequence of ...