Scientists Scan for Weaknesses in the SARS-CoV-2 Spike Protein

The virus’s tool for prying open host cells is coated in a protective armor of sugar—but gaps may offer vulnerability to disruption by antibodies.

Written byChris Baraniuk
| 5 min read
coronavirus sars-cov-2 spike protein covid-19 structure glycans ace2 furin antibody

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: © ISTOCK.COM, TRAFFIC_ANALYZER

Coronaviruses’ visual hallmarks, those nubby protrusions sticking out in every direction, are the keys they use to enter cells. These so-called spike proteins bind to cells—in the case of SARS-CoV-2, human cells—to launch infection. To prevent that from happening, scientists around the world are focusing on the spike to reveal how it works, and find potential weaknesses to exploit.

The spike structure itself is actually made up of three proteins. At the top lies the point at which the viral particle grasps an enzyme on the surface of human cells known as the ACE2 receptor.

This point must be in an “open” or “up” position, flexed and ready to attach itself to the host cell receptor, says Rommie Amaro, a biophysical chemist at the University of California, San Diego. An animation posted online by Greg Bowman, a biophysicist at Washington University School of Medicine, reveals that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • chris baraniuk

    Chris Baraniuk is a freelance science journalist based in Northern Ireland who contributes to The Scientist. He has covered biological and medical science for a range of publications, including the BBC, the BMJ, and Mosaic. He also writes about nature, climate change, and technology. His background in the humanities has long proved invaluable in his quest to bring science stories to people from all walks of life.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH