Scientists Scan for Weaknesses in the SARS-CoV-2 Spike Protein

The virus’s tool for prying open host cells is coated in a protective armor of sugar—but gaps may offer vulnerability to disruption by antibodies.

chris baraniuk
| 5 min read
coronavirus sars-cov-2 spike protein covid-19 structure glycans ace2 furin antibody

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: © ISTOCK.COM, TRAFFIC_ANALYZER

Coronaviruses’ visual hallmarks, those nubby protrusions sticking out in every direction, are the keys they use to enter cells. These so-called spike proteins bind to cells—in the case of SARS-CoV-2, human cells—to launch infection. To prevent that from happening, scientists around the world are focusing on the spike to reveal how it works, and find potential weaknesses to exploit.

The spike structure itself is actually made up of three proteins. At the top lies the point at which the viral particle grasps an enzyme on the surface of human cells known as the ACE2 receptor.

This point must be in an “open” or “up” position, flexed and ready to attach itself to the host cell receptor, says Rommie Amaro, a biophysical chemist at the University of California, San Diego. An animation posted online by Greg Bowman, a biophysicist at Washington University School of Medicine, reveals that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • chris baraniuk

    Chris Baraniuk

    Chris Baraniuk is a freelance science journalist based in Northern Ireland who contributes to The Scientist.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo