Setting the Record Straight

Scientists are taking to social media to challenge weak research, share replication attempts in real time, and counteract hype. Will this online discourse enrich the scientific process?

Written byDaniel Cossins
| 12 min read

Register for free to listen to this article
Listen with Speechify
0:00
12:00
Share

© PATRICK GEORGE/IKON IMAGES/CORBIS

Sometimes even the best-known stories have hidden subplots. This January, Nature published two papers describing an astonishing new way to make stem cells: simply grow blood cells from adult mice in acidic media.1,2 The researchers behind the work—a team from the RIKEN Center for Developmental Biology in Japan and Harvard Medical School—called it stimulus-triggered acquisition of pluripotency, or STAP. These stress-induced stem cells were even more malleable than induced pluripotent stem cells (iPSCs), and, even better, they could be produced without the addition of transcription factors. Naturally, the press was abuzz with the promise of STAP to accelerate stem cell research. But in the less well-lit corners of the Web, some were already raising doubts.

Leading the way was Paul Knoepfler, a stem cell researcher ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH