Sex of Human Cells Matters in Studying Neurological Disease

Authors of a new review urge researchers to consider how the chromosomal sex of a cell affects experiments in research on neurodegeneration.

Written byAmanda Heidt
| 5 min read
neurological disorder, brain disease, Q&A, Alzheimer's disease, Parkinson's disease, multiple sclerosis, motor neuron disease, neurodegeneration, blood-brain barrier, sex

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: These endothelial brain cells (blue) have been stained for ZO1 (red), a tight junction protein that defines the blood-brain barrier.
ALISA MORSS CLYNE

In 2015, the National Institute of Neurological Disorders and Stroke released a report stating that more than 600 neurological conditions—including Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, and motor neuron disease, among others—affect an estimated 50 million Americans, a number that is growing each year. Many of these diseases share a common feature in the degradation of the blood-brain barrier (BBB), the cloak of endothelial cells that disposes of the brain’s waste while also providing necessary nutrients.

To better understand these diseases and to develop new ways to treat them, scientists rely on increasingly sophisticated cellular models that attempt to mimic the full complexity of the BBB. The advent of hydrogels, microfluidics, and so-called organs on a chip all rely on stable cell lines to build a useful ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • amanda heidt

    Amanda first began dabbling in scicom as a master’s student studying marine science at Moss Landing Marine Labs, where she edited the student blog and interned at a local NPR station. She enjoyed that process of demystifying science so much that after receiving her degree in 2019, she went straight into a second master’s program in science communication at the University of California, Santa Cruz. Formerly an intern at The Scientist, Amanda joined the team as a staff reporter and editor in 2021 and oversaw the publication’s internship program, assigned and edited the Foundations, Scientist to Watch, and Short Lit columns, and contributed original reporting across the publication. Amanda’s stories often focus on issues of equity and representation in academia, and she brings this same commitment to DEI to the Science Writers Association of the Rocky Mountains and to the board of the National Association of Science Writers, which she has served on since 2022. She is currently based in the outdoor playground that is Moab, Utah. Read more of her work at www.amandaheidt.com.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery