T Cells Ward Off Aging with Help from Their Friends

Immune cells deliver packages of telomeres to T cells, helping them retain their virus-fighting function over time, research suggests.

Written byNatalia Mesa, PhD
| 5 min read
3D rendered image of three T cells in grey 
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Like all of the cells in our body, immune cells age. Over time, they become less and less able to fight infection, cancer, and disease. Previously, researchers thought the process of cells growing old and feeble, known as cellular senescence, was an inevitable consequence of routine infection and time. But a study published yesterday (September 15) in Nature Cell Biology suggests that an interaction between T cells and antigen presenting cells (APCs) early in the immune response to viruses may determine how fast T cells decline.

Telomeres are long, repeating sequences of DNA that bookend chromosomes and protect their ends from fraying. As cells age, their telomeres get shorter and shorter with each cell division until eventually, they can no longer divide. The new study finds that after infection, APCs, the cells that initially kickstart T cells’ immune response by presenting them with a foreign antigen, chop off and deliver ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform