The Many Model Systems of COVID-19

Researchers turn to familiar model animals, along with some fresh strategies, to develop countermeasures against SARS-CoV-2 and investigate the biology of infection.

abby olena
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: A golden Syrian hamster
© ISTOCK.COM, 4KODIAK

Earlier this year, as transmission of SARS-CoV-2, the virus behind the COVID-19 pandemic, started to pick up speed, researchers around the world hurried to find model systems that could provide insight into disease spread, host immune responses, and possible treatments.

“When the pandemic first started, nobody really knew what was going to be the best model,” says Amanda Martinot, a veterinary pathologist at Tufts Cummings School of Veterinary Medicine.

The most widely available candidates were mice, which are easily housed and so well-researched that there are tons of tools available for studying nearly every aspect of their biology. But as researchers suspected, based on previous incompatibility of mice and other coronaviruses, the animals present challenges when it comes to studying SARS-CoV-2. The virus uses a human receptor called ACE2 to get into cells, but mouse ACE2 is different enough that the virus doesn’t ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide