Tiny Hitchhikers Reveal Turtles’ Movements and Foraging Ecology

Microscopic creatures called epibionts that live on sea turtles’ shells can help researchers understand their secretive lives.

amanda heidt
| 7 min read
Three researchers with headlamps on stand around a loggerhead turtle on the beach while a man covers the turtle's face with a gloved hand

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

ABOVE: Researchers scrape the shell of a loggerhead turtle on a nesting beach on St. George Island off the coast of Florida.
MATTHEW WARE

A turtle’s shell teems with thousands of microscopic animals, and the unique features of these hitchhikers could help scientists understand turtles’ travels and diets, according to a study published July 2 in Frontiers in Ecology & Evolution. By combining data on these so-called epibionts with stable isotope analysis, the researchers were able to identify specific organisms that may be useful in discriminating between sea turtle populations, helping to set conservation priorities that would otherwise depend on costly satellite tracking.

“I’m always excited when people use a novel technique to study sea turtles, because even though we’ve been studying them for decades, there’s still so much that we don’t know,” Erin Seney, a marine ecologist at the University of Central Florida who was not involved in the study, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • amanda heidt

    Amanda Heidt

    Amanda was an associate editor at The Scientist, where she oversaw the Scientist to Watch, Foundations, and Short Lit columns. When not editing, she produced original reporting for the magazine and website. Amanda has a master's in marine science from Moss Landing Marine Laboratories and a master's in science communication from UC Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio