Top Technical Advances in 2017

The year’s most impressive achievements include new methods to extend CRISPR editing, patch-clamp neurons hands-free, and analyze the contents of live cells.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Muscle from a mouse model of Duchenne muscular dystrophyCONBOY LAB AND MURTHY LABResearchers aren’t just finding new applications for this precise and relatively easy-to-use gene-editing technique, they’re also tweaking it to give it new powers. Among this year’s developments:

RNA editing: A research team led by Feng Zhang of the Broad Institute fused an RNA-editing enzyme to an RNA-targeting Cas protein, enabling users to edit specific nucleotides within RNA molecules in human cells. The technique, called RNA Editing for Programmable A-to-I Replacement (REPAIR), is expected to help researchers investigate phenomena such as alternative splicing mechanisms and translation. The study’s authors suggest it could one day even be used therapeutically.

Base-editing human embryos: A team from Sun Yat-Sen University in China reported correcting, in living human embryos, the single-nucleotide mutation that leads to the blood disorder β thalassemia. The base-editing does not cut the DNA when it makes an edit, so it potentially has fewer harmful side effects than classic CRISPR-Cas editing would.

Nanoparticle delivery: ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Shawna Williams

    Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor's degree in biochemistry from Colorado College and a graduate certificate and science communication from the University of California, Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio