Transgenic Mouse Illuminates Melanoma Metastasis

Glowing cells mark the routes of tumor spread by way of newly formed lymph vessels.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Melanoma metastasis in vivo, visualized using MetAlert mice. The image on the right is an animal that emits bioluminescence upon the induction of new lymphatic vessels, an early stage in the development of metastasis. On the left is an equivalent animal with non-aggressive melanoma.MARISOL SOENGAS/CNIOMetastasizing cancer cells travel through the lymphatic vasculature, but it’s not clear what role the formation of lymph vessels, called lymphangiogenesis, plays in cancer progression. Now, an international team of researchers has used a new mouse model to link lymphangiogenesis to melanoma metastasis. Bioluminescent cells in the animals not only showed where tumors were spreading, but after tumor removal could indicate that cancer recurrence was imminent. Their findings were published today (June 28) in Nature.

“The question is, how do cancer cells get to the visceral metastasis sites, [such as] lung and liver?” Harvard University cancer biologist Rakesh Jain, who did not participate in the work, tells The Scientist. “This paper indicates that lymphangiogenesis plays an important role in distal metastasis. It’s a very nice story.”

Marisol Soengas, who leads the melanoma group at the Spanish National Cancer Research Centre in Madrid, wanted to investigate the early stages of metastasis in cutaneous melanoma, an especially aggressive form of cancer. “When the metastases occur, they are not just a single metastasis,” Soengas says. Instead, “the cells tend to disseminate to different organs in the body and develop what we call multiple metastases. That’s a complication in trying to visualize the process ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome