Without This Enzyme, Insertions Thrive in the Yeast Genome

A study underscores the importance of Dna2 in maintaining the integrity of the genetic code.

katya katarina zimmer
| 3 min read
DNA repair enzymes fix sequence through nonhomologous end joining

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © istock.com, selvanegra

The paper

Y. Yu et al., “Dna2 nuclease deficiency results in large and complex DNA insertions at chromosomal breaks,” Nature, 564:287–90, 2018.

Few things are as dangerous for a cell as a DNA double-strand break. If both strands of the double helix are severed and left unrepaired, the cell could die at the next round of mitosis.

To protect against such a fate, a suite of DNA-repairing proteins is on standby for when breaks occur. One of them is the evolutionarily conserved enzyme Dna2, which helps prepare broken DNA strands for repair by other proteins and also degrades excess pieces of DNA produced during replication.

To better understand the enzyme’s role, Grzegorz Ira, a geneticist at Baylor College of Medicine, and colleagues recently investigated the consequences of deleting Dna2 in yeast. The deletion alone would be fatal to the cells, likely because the bits of DNA ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • katya katarina zimmer

    Katarina Zimmer

    After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.

Published In

March 2019

Going Under

Dissecting the effects of anesthetics

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio