Artificial Blood Breathes New Life Into Dead Pigs’ Cells

A study’s authors say their oxygenating cocktail may lead to technologies that preserve organs in deceased people for longer periods for transplantation.

A black and white headshot of Andrew Carstens
| 2 min read
fluorescence microscopy of kidney tissue

Immunostaining for actin in the kidney

David Andrijevic, Zvonimir Vrselja, Taras Lysyy, Shupei Zhang; Sestan Laboratory; Yale School of Medicine

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A bloodlike cocktail pumped through pigs’ vascular systems one hour after their deaths effectively supplied oxygen to tissues and partially restored cellular activity in multiple organs, including the heart, brain, and liver, a study published today (August 3) in Nature finds. The work follows a 2019 experiment in which the same group restored cellular function in the brains of pigs four hours after their deaths.

“Similar to the previous study in this work, we actually show that we can restore certain cell functions sometime after death,” study author Zvonimir Vrselja, a neuroscientist at Yale University, said a press conference, according to Gizmodo.

Vrselja and his colleagues’ research has implications for preserving organs for transplantation for longer periods compared to the current practice of using extracorporeal membrane oxygenation (ECMO) machines to keep the organs of deceased people alive until they can be donated, reports Nature. “We’re not saying it’s clinically relevant, but it’s moving in the right direction,” Vrselja tells the outlet.

See “Researchers Succeed in Keeping Disembodied Pig Brains Alive

The fluid pumped through the animals beginning one hour after their deaths is composed of equal parts of the animals’ blood and a cocktail of substances that mimic hemoglobin’s ability to carry oxygen plus approved and experimental drugs meant to reduce inflammation, prevent clotting, and minimize cell death, New Scientist reports. Tests on cells and tissue were conducted on samples from an experimental group of pigs and compared to others that were either connected to ECMO machines or to nothing.


Images comparing control electrocardiogram signals and tissue stainings (left) to those of the experimental group.<br><br>
Representative images of electrocardiogram tracings in the heart (top), immunostainings for albumin in the liver (middle), and actin in the kidney (bottom). The images on the left side represent the organs subjected to a control perfusion, while the images on the right represents the organs subjected to the experimental perfusion.
David Andrijevic, Zvonimir Vrselja, Taras Lysyy, Shupei Zhang; Sestan Laboratory; Yale School of Medicine


After several hours, the experimental group showed more effective fluid circulation and oxygenation of tissues throughout the pigs’ bodies compared to the ECMO group, Nature reports. The pigs in the experimental group had electrical activity and contractions in their hearts, while the EMCO group had none. In addition, the experimental group showed more metabolic activity compared to the EMCO group, including higher liver protein production and more glucose uptake in the cells of the brain, heart, and liver, the authors write in their study.

“We have shown that cells don’t die as quickly as we assumed they do, which opens up possibilities for intervention. We can persuade cells not to die,” Vrselja tells New Scientist.

While the initial results are promising, Peter Friend, an organ transplant specialist at the University of Oxford, tells New Scientist that the best way to gauge the health of the animals’ organs would be to transplant them into another animal. “If they’re going after transplantation, just transplant the organ,” Friend says, adding that if the current work is successful “in resuscitating an organ which has suffered an otherwise fatal injury, then potentially this is very exciting.”

Keywords

Meet the Author

  • A black and white headshot of Andrew Carstens

    Andy Carstens

    Andy Carstens is a current contributor and past intern at The Scientist. He has a bachelor’s degree in chemical engineering from the Georgia Institute of Technology and a master’s in science writing from Johns Hopkins University. Andy’s work has also appeared in Audubon, Slate, Them, and Aidsmap.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide