Artificial Blood Breathes New Life Into Dead Pigs’ Cells

A study’s authors say their oxygenating cocktail may lead to technologies that preserve organs in deceased people for longer periods for transplantation.

Written byAndy Carstens
| 2 min read
fluorescence microscopy of kidney tissue
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A bloodlike cocktail pumped through pigs’ vascular systems one hour after their deaths effectively supplied oxygen to tissues and partially restored cellular activity in multiple organs, including the heart, brain, and liver, a study published today (August 3) in Nature finds. The work follows a 2019 experiment in which the same group restored cellular function in the brains of pigs four hours after their deaths.

“Similar to the previous study in this work, we actually show that we can restore certain cell functions sometime after death,” study author Zvonimir Vrselja, a neuroscientist at Yale University, said a press conference, according to Gizmodo.

Vrselja and his colleagues’ research has implications for preserving organs for transplantation for longer periods compared to the current practice of using extracorporeal membrane oxygenation (ECMO) machines to keep the organs of deceased people alive until they can be donated, reports Nature. “We’re not saying it’s clinically relevant, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot of Andrew Carstens

    Andy Carstens is a freelance science journalist who is a current contributor and past intern at The Scientist. He has a bachelor’s degree in chemical engineering from the Georgia Institute of Technology and a master’s in science writing from Johns Hopkins University. Andy’s work has previously appeared in AudubonSlateThem, and Aidsmap. View his full portfolio at www.andycarstens.com.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo