Breast Cancer Cells Churn Out Cholesterol to Fuel Metastasis

A study uncovers a novel connection between the biomolecule and cancer progression.

alejandra manjarrez
| 4 min read
Green fluorescent semispherical object surrounded by tissue of the same color.

© ISTOCK.COM, Christoph Burgstedt

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

High levels of cholesterol in the blood, as a result of diet or disease, have been associated with an increased risk for breast cancer recurrence. Studies suggest that cancer cells may use this molecule to fuel tumor growth or to impair the immune system. But a study published this week (February 2) in Molecular Therapy reports that cholesterol synthesis can also take place within tumor cells themselves, stimulating metastatic growth. This process is mediated by communication between triple negative breast cancer (TNBC) cells and fibroblasts from the lungs. Researchers were able to inhibit this signaling cascade and reduce lung metastasis by treating mice with the most common cholesterol-lowering drugs—statins.

“This study provides a promising route through which cholesterol pathways could be targeted to treat TNBC, which is concordant with epidemiological studies that show a potential benefit to statins in patients who have been diagnosed with TNBC,” writes MD Anderson radiation ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo