CRISPRi-Controlled Gene Expression

A variation of the gene-editing technique can more precisely and efficiently downregulate the expression of target genes than traditional CRISPR/Cas9.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Crystal structure of a Cas9 in complex with an RNA guide and a stretch of target DNAWIKIMEDIA, H. NISHIMASU ET AL.A team of researchers at the Gladstone Institutes in San Francisco, California, has used a version of CRISPR gene editing known as CRISPR interference (CRISPRi) to reversibly and accurately suppress gene expression in induced pluripotent stem cells (iPSCs) and derivative T cells and heart cells, according to a study published in Cell Stem Cell today (March 10).

CRISPRi, first reported in 2013, relies on a deactivated version of the Cas9 protein, which—together with an inhibitor protein called KRAB—sits on a target gene. Instead of cutting the DNA, the proteins simply block the machinery needed to transcribe the gene from gaining access, thereby suppressing its expression. Comparing this approach to the classic CRISPR/Cas9 system designed to cleave the DNA, the Gladstone team found that CRISPRi is actually more effective, silencing the target gene in more than 95 percent of cells, compared with the 60 percent to 70 percent efficiency of CRISPR/Cas9. Moreover, CRISPRi did not result in any off-target changes in gene expression—a commonly cited problem with CRISPR/Cas9.

“We were amazed by the dramatic difference in performance between the two systems,” study coauthor ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit