First, Do No Harm…

Is DNA damage an inevitable consequence of epigenetic reprogramming?

Written byJim Woodgett
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Lost in the debate about ethical and moral dilemmas surrounding human embryonic stem cell research are the considerable practical difficulties with using such cells as a tool in regenerative medicine. In 2006 Yamanaka and his colleagues reported that fully developed somatic cells can be induced to form pluripotent stem cells (iPSCs) that are functionally similar to embryonic stem cells. This groundbreaking discovery offered a possible solution to the controversial use of human embryos, but also the potential of deriving autologous cells from the patients who would be the ultimate recipients and beneficiaries of the regenerative products of their own iPSCs, reducing the problem of tissue rejection.

Progress since that initial discovery has been rapid, with major advances in increasing reprogramming efficiency and safety, as well ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH