Harboring Hard and Soft Cells Lets Tumors Grow and Metastasize Simultaneously

Islands of rigid cells within a matrix of soft ones allow tumors to be both solid and fluid, granting them toughness without losing the ability to break apart.

Written byKatherine Irving
| 4 min read
A purple-stained section of an invasive breast cancer growth. The dark purple non-fatty tissue takes up the majority of the frame, and pale purple circular tumors grow in ducts in the bottom left.
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Tumors are notorious for being harder than normal tissue, making them possible to identify through palpation. However, scientists who study individual cancer cells have found that the cells are soft—softness that is required for tumors to metastasize by squeezing through surrounding tissues and vessels en route to colonizing new locations. The paradoxical character of tumors that are simultaneously soft and yet hard to the physician’s touch has mystified scientists and clinicians for decades.

But now, after more than six years of back and forth with peer reviewers and journals, an international team of researchers across multiple scientific and medical fields says they’ve solved the enigma: Tumors are both hard and soft. “Islands” of rigid tumor cells are interwoven in a “sea” of fluid cells, the team reports September 29 in Nature Physics. This special arrangement makes cancerous growths tough enough to push against the surrounding tissues as the tumor grows ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot of Katherine Irving

    Katherine Irving is an intern at The Scientist. She studied creative writing, biology, and geology at Macalester College, where she honed her skills in journalism and podcast production and conducted research on dinosaur bones in Montana. Her work has previously been featured in Science.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH