How Worms Avoid Eating Bad Bacteria and Warn Their Offspring Too

A small RNA in Pseudomonas triggers an avoidance response in C. elegans that can be passed on to the next generation, according to research presented at this week’s meeting of the American Society for Cell Biology.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, HEITIPAVES

This past June, Princeton University molecular geneticist Coleen Murphy and colleagues published their research documenting that after consuming a pathogen, C. elegans can pass on information about it to their offspring, allowing the next generation to avoid making the same mistake. But only some pathogenic bacteria trigger this transgenerational avoidance response. Murphy wanted to know why.

Her group started exposing worms to various bits of pathogenic Pseudomonas bacteria, which the team had previously found to trigger the avoidance response across generations. To the researchers’ surprise, exposure to bacterial metabolites did not trigger an avoidance response, nor did bacterial DNA. Small RNAs in the bacteria, however, did. When they squirted a bunch of Pseudomonas small RNAs onto the worms’ usual diet of E. coli, the nematodes later avoided eating Pseudomonas, even though they’d never encountered the actual organism before.

The team looked for differences in the expression ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo