Infographic: Reverse Signaling Between Neurons

So-called mossy fiber synapses in the hippocampus can meter the amount of neurotransmitter they receive by sending glutamate against the usual direction of synaptic flow.

Written byChristie Wilcox, PhD
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The plasticity of neuronal synapses—that is, the dynamic relationship between two neurons in the brain as one sends signals to another—ultimately underlies cognition, learning, and memory. The increase in synaptic strength following a burst of stimulation, dubbed post-tetanic potentiation (PTP), is driven by an increase in the amount of neurotransmitter ready to be released from the presynaptic side, and it’s the most important form of plasticity in so-called mossy fiber synapses in the hippocampus. A new study finds this potentiation can be regulated by the postsynaptic cell by sending the neurotransmitter glutamate back to the presynaptic side—a form of retrograde signaling that neuroscientists hadn’t anticipated existed in this synapse.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH