Lack of Diversity in Genetic Datasets is Risky for Treating Disease

Certain populations have been historically underrepresented in genome sequencing studies, but the NIH, private clinics, and 23andMe and other companies are trying to fix that.

Written byAshley Yeager
| 6 min read
Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

Not too long ago, a couple came to see Neil Risch, a human geneticist at the University of California, San Francisco, in the hope that he could identify rare gene variants in their child, who had an undiagnosed disease. Not a problem, Risch thought. He’d sequence the exomes of the parents and child and run the data through a rare-variants database to identify the faulty genes underlying the child’s illness. The case wasn’t so straightforward, though. The parents didn’t have European ancestry but were descendants of a population not well represented in the database.

“For individuals with genetic backgrounds not represented in [the database], there can be additional challenges in properly identifying genetic variants that cause the patient’s symptoms,” Risch says. Namely, it’s hard to identify any genetic link to symptoms, perhaps because the disease is caused by novel variants not yet identified as pathogenic.

The case, Risch says, is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH