Macrophages Play a Double Role in Cancer

Macrophages play numerous roles within tumors, leaving cancer researchers with a choice: eliminate the cells or recruit them.

| 14 min read

Register for free to listen to this article
Listen with Speechify
0:00
14:00
Share

NOT ALL BAD: Macrophages, such as the one shown in this artificially colored scanning electron micrograph, may help or hinder cancer’s spread.D. PHILLIPS/SCIENCE PHOTO LIBRARYIn the late 2000s, Stanford University stem cell biologist Irving Weissman wanted to understand how normal blood-forming stem cells differed from those that went on to seed a type of blood cancer called acute myelogenous leukemia (AML). Using bone marrow samples from AML patients who had survived the nuclear bombs dropped on Japan during World War II, his team identified the developmental stage at which blood-forming stem cells branch off to become cancerous and compared gene expression profiles between those cells and their counterparts from healthy bone marrow samples. The researchers found that the leukemia-forming stem cells highly expressed a gene encoding CD47, a surface molecule known for its role on normal, healthy cells as a “don’t eat me” signal to phagocytosing macrophages. Weissman and his colleagues had no clue how CD47 had gotten onto cancer cells, but they couldn’t ignore it. “The molecule was just staring us in the face,” he says.

The researchers looked at stem cells from AML patients at the Stanford Medical Center to see if they also expressed CD47. “They all did,” says Weissman. After demonstrating in cell culture experiments that macrophages only engulfed AML cells that did not display CD47 on their surface, Weissman’s team grew human AML cells in five immune-deficient mice and treated the animals with an antibody against CD47.1 In just two weeks, AML cells were nearly undetectable in the animals’ blood, and had dropped by 60 percent in their bone marrow. “It was shocking,” says Weissman, noting that four of the five mice were essentially cured. “We knew that we were on the track of a potential therapeutic.”

In less than a decade, Weissman and his colleagues at ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Amanda B. Keener

    This person does not yet have a bio.

Published In

April 2018

Neuron Nets

Wrapped up in memory, addiction, and more

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit