New Screening Approach Reveals Novel Regulators of Microcephaly

Researchers combine organoids, CRISPR-Cas9, and cellular barcoding technologies to identify genes that influence brain size.

Written byCatherine Offord
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: A cerebral organoid
© IMBA/KNOBLICH LAB

The paper
C. Esk et al., “A human tissue screen identifies a regulator of ER secretion as a brain-size determinant,” Science, 370:935–41, 2020.

Organoids can be invaluable tools for studying human disease. But they’re often difficult to work with—especially when it comes to assessing multiple candidate genes that underlie a particular condition.

Over eight years of work, Jürgen Knoblich and colleagues at the Institute of Molecular Biotechnology in Vienna have come up with a way to get around this problem. Their approach combines brain organoids with two other technologies—CRISPR-Cas9 to knock out specific genes and DNA barcoding to track individual cells and their progeny.

The researchers recently trialed their approach, dubbed CRISPR-LIneage tracing at Cellular resolution in Heterogeneous Tissue (CRISPR-LICHT), in a screen for genes linked to microcephaly, a condition in which a baby’s head is smaller than expected. The team found 13 genes with ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

January 2021

Expecting and Infected

What science is revealing about COVID-19 in mothers to be

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery