Real-time Outbreak Sequencing

Sequencing the whole genomes of bacterial pathogens as they spread among hospital patients and health care workers could transform the control of infectious disease.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Scanning electron micrograph of methicillin-resistant Staphylococcus aureus (MRSA, brown) surrounded by cellular debrisNIAID/NIHWhen an infectious outbreak occurs, hospital investigators combine epidemiological data with bacterial typing to trace the source and path of the pathogen in the hopes of preventing further infections. Current methods are slow and offer limited resolution, meaning they can’t always differentiate between strains originating from the same bacterial clone. But by dramatically increasing the speed and accuracy of strain discrimination, a new generation of rapid, low-cost whole-genome sequencing (WGS) technologies promises to revolutionize outbreak surveillance and investigation.

With full genome sequences, researchers can spot the mutations that accumulate every time a bacterium divides down to the single nucleotide level. This allows them to track the evolution and movement of microbes with unprecedented precision, potentially leading to life-saving interventions and improved infection control strategies.

“I expect whole-genome sequencing will be transformative, in particular in outbreak investigations, within the next few years,” said Kathryn Holt, a microbiologist at the University of Melbourne in Australia. “The key advance is the dramatic increase in resolution, which enables us to be much surer about transmission pathways.”

Genomic detectives

Two studies from this year demonstrate the power of this approach. In 2011, the National Institutes of Health (NIH) Clinical Center in Bethesda, Maryland, experienced an outbreak of a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo