Reprogrammed Cells Treat Diabetes in Mice

Researchers used a trio of transcription factors to transform pancreatic duct cells in vivo into β-like cells that secrete insulin and improve diabetes symptoms.

abby olena
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Injection of an adenoviral vector encoding pancreatic transcription factors induced insulin expression (red) in mouse pancreatic ducts. Ductal tissue is shown in green and nuclei in blue. YUHAN WANGOne strategy to treat type 1 diabetes, where the immune system destroys insulin-producing β cells, is to convert other cells into β-like cells that then take over insulin production. In a study published today (May 2) in Molecular Therapy, researchers reprogrammed pancreatic duct cells in vivo to successfully treat both genetically and chemically induced diabetes in mice.

“The work is part of a long line of studies attempting to genetically engineer insulin-producing cells in various tissues,” says Jake Kushner, a pediatric endocrinologist at Baylor College of Medicine in Houston who did not participate in the study. “It’s an exciting advance because it refines our understanding of what the capacity is of the various different components of either the pancreas or the liver to be transduced and make insulin-producing cells.”

Previous work had shown that both liver and pancreas cells could be converted into insulin-producing cells. Thus, Yuhan Wang, then a graduate student in Markus Grompe’s lab at Oregon Health & Science University, and colleagues set out to determine which of these cell types would make the best β-like cells.Injection of an adenoviral vector encoding pancreatic transcription factors induced insulin expression (red) in mouse pancreatic ducts. Lineage traced pancreatic ducts were identified by GFP (green). Insulin-positive pancreatic ducts were characterized by their loss of pancreatic ductal transcription factor expression, Sox9 (magenta).YUHAN WANG

In the latest study, the researchers intravenously injected diabetic mice with a virus loaded with the genes for Pdx1, Neurog3, and Mafa—transcription factors that had already been shown ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo