Researchers Make Knockout Stem Cell Lines in One Step

Combining gene editing and stem-cell induction improves efficiency of functional genetic analyses.

ruth williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Plasmids encoding reprogramming factors and plasmids encoding gene-editing machinery are transfected together into fibroblast cells. Approximately three weeks later, induced pluripotent stem cell (iPSC) colonies grown from single cells are apparent. These clones can be individually picked from the dish for further isolated growth and study.
See full infographic: WEB
© GEORGE RETSECK

In theory, mutating a gene of interest inside stem cells enables researchers to analyze the effects of that mutation on the development of particular cell types. In the laboratory of Jack Parent at the University of Michigan Medical School, for example, postdoctoral researcher Andrew Tidball is using such an approach to investigate how gene mutations associated with epileptic encephalopathy affect brain cell development. But while trying to introduce the specific mutations into human induced pluripotent stem cells (iPSCs), he ran into difficulties.

A major problem, Tidball says, is that after transfecting iPSCs with gene-editing plasmids, individual cells need to be isolated, but “stem cells don’t like to be [alone]. They die unless you add some components to help them along.” Even then, he adds, “a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • ruth williams

    Ruth Williams

    Ruth is a freelance journalist.

Published In

December 2017

The Embryo's Secrets Revealed

Genomic reprogramming in early development

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours