Stemming the Toxic Tide

How to screen for toxicity using stem cells

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

The most straightforward way to find out whether a drug or environmental chemical might harm an unborn baby is to test its effect on a pregnant lab animal. In recent years, however, the thousands of chemicals in need of testing—in food, cosmetics, and medicines, for example—have driven researchers in industry and government to search for in vitro alternatives with the hope of reducing the number of animals required.

Increasingly, embryonic and induced pluripotent stem cells from humans and animals alike have been put to work in such toxicology studies. In 1997, scientists introduced the mouse embryonic stem cell test, or EST, which assesses the effects of a chemical on cell differentiation and death. Today, the EST is one of the most widely used in vitro toxicity assays. Several pharmaceutical companies, such as Pfizer and Merck, use the EST for preclinical toxicity screening, and the US Environmental Protection Agency (EPA) and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH