ABOVE: Astrocytes (blue) have infiltrated the interior of the spinal cord, affecting neurons (yellow) in a mouse model of amyotrophic lateral sclerosis (ALS). In the study, the researchers developed an approach to deliver a CRISPR base editing system (green) to astrocytes in order to disable the expression of a mutant gene and reduce symptoms.
COLIN LIM, UNIVERSITY OF ILLINOIS
Base editors, which convert one nucleotide to another without a double-strand DNA break, have the potential to treat diseases caused by mutant genes. One drawback, though, is that the DNA that encodes CRISPR base editors is long—too long to fit in the adeno-associated viruses (AAVs) most commonly used for gene therapy. In a study published in Molecular Therapy on January 13, researchers split the DNA encoding a base editor into two AAV vectors and injected them into a mouse model of inherited amyotrophic lateral sclerosis (ALS). The strategy disabled the disease-causing gene, ...