Symptoms in ALS Mouse Model Improve with CRISPR Base Editing

Researchers slowed disease progression in the mice by injecting two different viral vectors, each containing one part of the DNA encoding the Cas9 protein, to edit the causative gene.

Written byAbby Olena, PhD
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Astrocytes (blue) have infiltrated the interior of the spinal cord, affecting neurons (yellow) in a mouse model of amyotrophic lateral sclerosis (ALS). In the study, the researchers developed an approach to deliver a CRISPR base editing system (green) to astrocytes in order to disable the expression of a mutant gene and reduce symptoms.
COLIN LIM, UNIVERSITY OF ILLINOIS

Base editors, which convert one nucleotide to another without a double-strand DNA break, have the potential to treat diseases caused by mutant genes. One drawback, though, is that the DNA that encodes CRISPR base editors is long—too long to fit in the adeno-associated viruses (AAVs) most commonly used for gene therapy. In a study published in Molecular Therapy on January 13, researchers split the DNA encoding a base editor into two AAV vectors and injected them into a mouse model of inherited amyotrophic lateral sclerosis (ALS). The strategy disabled the disease-causing gene, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems