Techniques for Assessing Genomic Copy Number Variations

As the importance of genomic copy number variations for health and disease becomes clearer, researchers are creating new ways to detect these changes in the genome.

Written bySarah C.P. Williams
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© DIM TIK/SHUTTERSTOCK.COMA decade ago, scientists studying the human genome found 1,447 copy number variable regions, covering a whopping 12 percent of the genome (Nature, 444:444-54, 2006). Ranging in size from 1 kilobase to many megabases, the number of repetitive DNA sequences scattered throughout the human genome can expand and contract like an accordion as cells divide. Extra—or too few—copies of these repeats, known as copy number variations (CNVs), can explain inherited diseases or, when the copy number change occurs sporadically in somatic cells, can result in cancer. Today, a growing number of scientists are making links between CNVs, health, and disease.

But measuring CNVs in cells from an individual can be tricky. For a number of years, researchers relied on fluorescently tagged microarray probes that attached to sections of genes; locations where the probes fluoresced more or less brightly than in an average genome suggested duplications or deletions of repeats within the CNV region, but the resolution was generally low. Throughout the early 2000s, researchers moved toward using higher-resolution microarrays to detect CNVs, and commercial kits became available that provided the probes needed for these assays. More recently, the advent of high-throughput genome sequencing has offered a new way to detect and quantify, or “call,” CNVs.

“This seems to be the next wave in CNV calling,” says computational biologist Dan Levy of Cold Spring Harbor Laboratory. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel