Techniques for Assessing Genomic Copy Number Variations

As the importance of genomic copy number variations for health and disease becomes clearer, researchers are creating new ways to detect these changes in the genome.

Written bySarah C.P. Williams
| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

© DIM TIK/SHUTTERSTOCK.COMA decade ago, scientists studying the human genome found 1,447 copy number variable regions, covering a whopping 12 percent of the genome (Nature, 444:444-54, 2006). Ranging in size from 1 kilobase to many megabases, the number of repetitive DNA sequences scattered throughout the human genome can expand and contract like an accordion as cells divide. Extra—or too few—copies of these repeats, known as copy number variations (CNVs), can explain inherited diseases or, when the copy number change occurs sporadically in somatic cells, can result in cancer. Today, a growing number of scientists are making links between CNVs, health, and disease.

But measuring CNVs in cells from an individual can be tricky. For a number of years, researchers relied on fluorescently tagged microarray probes that attached to sections of genes; locations where the probes fluoresced more or less brightly than in an average genome suggested duplications or deletions of repeats within the CNV region, but the resolution was generally low. Throughout the early 2000s, researchers moved toward using higher-resolution microarrays to detect CNVs, and commercial kits became available that provided the probes needed for these assays. More recently, the advent of high-throughput genome sequencing has offered a new way to detect and quantify, or “call,” CNVs.

“This seems to be the next wave in CNV calling,” says computational biologist Dan Levy of Cold Spring Harbor Laboratory. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

October 2016

30th Anniversary Issue

How life science research has changed since 1986

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo