Three Autism-Linked Genes Converge on Tweaks to Cells’ Timing

The genes are involved in pacing the development of inhibitory and excitatory neurons. An imbalance in these two types of signaling is thought to play a role in autism.

Written byAngie Voyles Askham and Spectrum
| 3 min read
Microscopy image showing patches of magenta and green
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mutations in three genes strongly associated with autism shift the pace at which certain inhibitory and excitatory neurons develop, according to a study published today in Nature. The findings reveal a novel point of convergence by which the mutations affect brain growth and activity, the researchers say.

“There is a problem of timing, basically,” says lead researcher Paola Arlotta, professor of stem cell and regenerative biology at Harvard University. That timing issue, she says, “may result later in imbalances in the way the circuit is wired and works.” An imbalance between excitatory and inhibitory signaling in the brain is thought to contribute to autism.

The three genes—ARID1B, CHD8 and SUV420H1 (also known as KMT5B)—are all involved in regulating chromatin, the complex of proteins and coiled DNA that makes up chromosomes. In addition to having an increased likelihood of autism, people who carry a mutation in one of these genes also ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research