Top Technical Advances 2015

The Scientist’s choice of major improvements in imaging, optogenetics, single-cell analyses, and CRISPR

kerry grens
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Time-lapse data from IsoView microscopy shows a Drosophila larva with a fluorescent marker of neural activity.COURTESY OF KELLER LAB, HHMI/JANELIA RESEARCH CAMPUSImaging

Life-science imaging broke barriers this year, as scientists built upon microscopy approaches to peer ever deeper into living tissues.

In October, Purdue University’s Ji-Xin Cheng and colleagues reported they had greatly increased the speed of collecting images—from minutes to seconds—using in vivo vibrational spectroscopic imaging, a technique that obviates the need for fluorescence. The key improvement was eliminating the need for a spectrometer, which collects the vibrational signature of molecules within a sample that are excited by light. Instead, Cheng’s team color-coded the photons before they went into the tissue.

“The idea is that before we send the photons into the tissue, we code every color with a distinct megahertz frequency,” Cheng told The Scientist at the time. “In this way, we can collect the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours