Tumor Organoids Hold Promise for Personalizing Cancer Therapy

The three-dimensional cell cultures are still in the development phase, but researchers are excited about their use to predict patients’ responses to various treatment options.

Written byJef Akst
| 4 min read
3-D Treatment

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Organoids such as these ones made from healthy human colon cells could help researchers predict patient responses to drugs in vitro.
JARNO DROST

As researchers improve ways to quickly and cheaply sequence DNA, the concept of precision medicine is gaining a foothold in the medical community. When it comes to cancer, a disease that leaves its mark in a patient’s genome, sequencing tumor DNA to tailor treatment plans to individuals seems an obvious application of the technology. “The idea of precision medicine as in individualized treatment, I think that makes so much sense,” says Alice Soragni, a cancer biologist at the University of California, Los Angeles (UCLA) David Geffen School of Medicine. “When you work with a few of these tumors, each and every one is a bit different.”

Over the past few years, the field of oncology has shifted in this direction. In 2017, the US Food and Drug ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile

Published In

On Target July Issue The Scientist
July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo