Week in Review: April 28–May 2

Male scientists stress mice out; using SCNT to reprogram adult cells; acetate can reach mouse brain, reduce appetite; WHO sounds “post-antibiotic era” alarm

Written byTracy Vence
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAMale scientists could be skewing research results, according to a study published in Nature Methods this week (April 28). McGill University’s Jeff Mogil and his colleagues found that the scent of male experimenters—and even of other mammals—triggered a physiological stress response in mice, whereas female odors did not.

“It’s definitely a study that will impact the field of behavioral phenotyping for biomedical research,” behavioral biologist Lars Lewejohann of the University of Osnabrück told The Scientist. “It’s something that’s going to have to be in the back of the mind of any researcher doing [rodent] research,” agreed Robert Hallock from Skidmore college who, like Lewejohann, was not involved in the work.

NYSCF, DIETER EGLIWriting in Nature this week (April 28), scientists from the New York Stem Cell Foundation Research Institute and their colleagues reported successfully reprogramming adult skin cells into human embryonic stem cells (hESCs) through somatic cell nuclear transfer (SCNT). Just two weeks ago (April 17), a team from Korea’s CHA Stem Cell Institute and the firm Advanced Cell Technologies reported similar success using SCNT to reprogram hESCs from adult skin cells, in Cell Stem Cell.

“This is an important demonstration that SCNT works and can be used to model and perhaps one day treat disease,” stem-cell researcher George Daley from the Harvard Stem Cell Institute wrote in an e-mail to The Scientist.

CERAN AND PEREZDietary fiber is known to reduce appetite, and researchers have long attributed this trait to the release of gut hormones upon fermentation. But a study in mice suggested that some amount of acetate, a short-chain fatty acid produced as a result of fiber fermentation within the colon, actually infiltrates a food-intake-associated area of the brain, dampening appetite. Scientists from Imperial College London published a paper describing the phenomenon in Nature Communications this week (April 29).

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH