Ancient Viral DNA Helps Mouse Brains Fight Infection

Mammals that give birth to live young may have evolved to make use of the remnants of viruses in their genomes to ward off pathogens, a study suggests.

Written byNatalia Mesa, PhD
| 3 min read
illustration of neurons in blue and microglia in orange
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Remnants of ancient viral DNA are still active in the genomes of animals alive today. At some point in evolutionary history, many of these so-called endogenous retroviruses inserted themselves into the DNA of their host, and their genetic code has been present ever since. Studies have found that this leftover DNA still serves crucial roles unique to mammals.

In a study published in Development on September 26, scientists say they’ve characterized two retrovirus-derived genes that fight infections in the brains of mammals that give birth to live young, a group known as eutherians.

Study coauthor Tomoko Kaneko-Ishino, a geneticist at Tokai University in Japan, says it took her more than 30 years to uncover the function of two virus-derived genes. In an email to The Scientist, she writes that the new work’s roots extend back to a 1989 study on genomic imprinting, a phenomenon where maternal or paternal genes shut ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo