Dial It Up, Dial It Down

Newer CRISPR tools for manipulating transcription will help unlock noncoding RNA’s many roles.

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

MODIFIED FROM ISTOCK.COM/THORBJORN66One of the biggest surprises to come from sequencing efforts of the past 15 years is how little of the human genome is translated into proteins. We have about as many protein-coding genes, 20,000, as the roundworm Caenorhabditis elegans. And yet, roughly 80 percent of our genome is transcribed into RNA. Long or short, looping or straight, rigid or not, most of this rabble of transcripts never crosses what was once thought of as molecular biology’s finish line by being translated into proteins. Those RNAs may well harbor some explanations for why we differ from worms, and they often turn up in genome-wide studies as being associated with disease. But most of these so-called noncoding RNAs have no known function.

That’s where CRISPR/Cas9 serves an important role. Soon after scientists developed the system as a gene-editing method, they went to work on versions they could use to dial gene expression up or down, not by cutting genes and inserting new genetic material, but by having Cas9 take up residence on predetermined sites on the genome to initiate or stop transcription. These innovations, known as CRISPR activation (CRISPRa) and CRISPR inhibition (CRISPRi), are allowing users to tweak the expression not only of protein-coding genes but also of genes for noncoding RNAs to probe the functions of those transcripts.

Although more researchers are beginning to use CRISPRa and CRISPRi, the methods are—like anything CRISPR—still new. “When it comes to these technologies, we are all beta testers,” says ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies