Epigenome Editing Decreases Alcohol Seeking and Anxiety in Rats

A CRISPR-based system that reverses epigenetic changes caused by adolescent binge drinking reduces adult addiction-like behaviors in rats, a study finds, suggesting that an epigenomic approach could someday help treat people with alcohol use disorder.

Written byNatalia Mesa, PhD
| 4 min read
Alcohol bottles at a bar
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

More than 15 million people worldwide struggle with alcohol use disorder, a chronic relapsing condition that can have severe consequences on a person’s physical, emotional, and mental wellbeing. Despite its prevalence, few effective medications to treat alcohol addiction exist, and the risk of relapse after seeking treatment can be up to 90 percent within four years.

Now, a May 4 Science Advances study finds that editing epigenetic markers on a noncoding, regulatory region of the genome diminished both alcohol-seeking and anxious behaviors in rats exposed to binge drinking early in life. While the technology is far from being able to treat alcohol use disorder in people, the University of Illinois at Chicago researchers say the discovery could pave the way for future therapies.

“The paper is awesome,” Elizabeth Heller, an addiction neuroscientist at the University of Pennsylvania who was not involved in the study, tells The Scientist. “It is clearly ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo