High-Throughput Epigenetics Analyses

Emerging technologies help researchers draw mechanistic links between metabolism and epigenetic modification of DNA.

Written byJyoti Madhusoodanan
| 7 min read

Register for free to listen to this article
Listen with Speechify
0:00
7:00
Share

DARRYL LEJA/NHGRI/SCIENCE SOURCE

Chemical groups tacked onto DNA or histone proteins regulate how and when genes are expressed. Environmental signals can change the placement of these epigenetic tags, but researchers have had trouble pinning down how phenomena such as diet, inflammation, or social stress are converted into instructions that tweak gene functions.

Researchers have known for decades how some aspects of metabolism can wield epigenetic effects: breakdown products formed during sugar or protein digestion, for example, can be converted into chemical tags that epigenetically modify DNA or histones. But even a process as fundamental as turning glucose into cellular fuel can occur via distinct pathways that dynamically change based on a cell’s immediate environment and state. So a cancer cell and a healthy one might digest sugars in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

January 2018

The Science of Pain

New research on an age-old ailment

Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies