Hippocampal Cell Communication Is Bidirectional: Study

In an unexpected twist in neuroscience dogma, the cells on the receiving end of neurotransmission appear to be able to release glutamate to regulate the transmitting cell’s activity.

Written byChristie Wilcox, PhD
| 6 min read
artistic rendition of a neuron synapse with light and dark dots passing between two axons

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: © ISTOCK.COM, KOTO_FEJA

One of the most well-studied synapses in the brain continues to surprise neuroscientists. According to a May 18 study in Nature Communications, mossy fiber synapses, so named because their terminals look a bit like moss growing on the axons, have an unexpected way of regulating the flow of information in the hippocampus: the postsynaptic cells that receive neurotransmitter signals can release their own glutamate to tamp down the transmission from the cell on the presynaptic side.

This so-called retrograde signaling was totally unexpected and depends on calcium influx to the postsynaptic cell, meaning researchers might have to rethink the results of past experiments that used in vitro conditions with different calcium availability.

The findings are “a big deal” for neuroscientists, says Chris McBain, a synaptic physiologist at the National Institutes of Health who was not involved in the study. “Retrograde glutamatergic signaling is a really rare ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH