Microscopic Robots Deliver Drugs to the Brain

Researchers turned white blood cells called neutrophils into drug-smuggling “neutrobots,” which penetrated the blood-brain barrier to treat brain cancer in mice.

Written byAsher Jones
| 5 min read
neutrobots, neutrophils, white blood cells, microrobots, nanorobots, microbots, glioma, brain cancer, paclitaxel, magnetic, swarm, mice

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: Neutrobots stained purple
H. ZHANG ET AL., SCI ROBOT, 2021

Microscopic swimming robots that could navigate through the body to perform medical tasks such as delivery of targeted cancer therapies or surgeries are currently in development. In a study published March 24 in Science Robotics, scientists made magnetically controlled microrobots based on neutrophils, a type of white blood cell. In mice, these so-called neutrobots penetrated the blood-brain barrier (BBB) to deliver drugs to brain cancer cells.

“This is a very cool idea,” says Liangfang Zhang, a nanoengineer and bioengineer at the University of California, San Diego, who was not involved with the study. “I would say this paper is still an early proof-of-concept study, but I think that the overall concept is novel. It’s interesting because it’s new thinking about how to send cargo to the brain.”

A major hurdle in treating neurological diseases is getting drugs past the BBB, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH