Microscopic Robots Deliver Drugs to the Brain

Researchers turned white blood cells called neutrophils into drug-smuggling “neutrobots,” which penetrated the blood-brain barrier to treat brain cancer in mice.

Written byAsher Jones
| 5 min read
neutrobots, neutrophils, white blood cells, microrobots, nanorobots, microbots, glioma, brain cancer, paclitaxel, magnetic, swarm, mice

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: Neutrobots stained purple
H. ZHANG ET AL., SCI ROBOT, 2021

Microscopic swimming robots that could navigate through the body to perform medical tasks such as delivery of targeted cancer therapies or surgeries are currently in development. In a study published March 24 in Science Robotics, scientists made magnetically controlled microrobots based on neutrophils, a type of white blood cell. In mice, these so-called neutrobots penetrated the blood-brain barrier (BBB) to deliver drugs to brain cancer cells.

“This is a very cool idea,” says Liangfang Zhang, a nanoengineer and bioengineer at the University of California, San Diego, who was not involved with the study. “I would say this paper is still an early proof-of-concept study, but I think that the overall concept is novel. It’s interesting because it’s new thinking about how to send cargo to the brain.”

A major hurdle in treating neurological diseases is getting drugs past the BBB, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies