New Gene Editing Tool Corrects Mutations in Mitochondrial DNA

An enzyme pulled from toxic bacteria can enter the organelle and perform single-nucleotide DNA swaps.

amanda heidt
| 3 min read
CRISPR, TALENs, ZFNs, gene editing, base editing, mitochondria, DNA, mtDNA

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, WIR0MAN

In a creative feat of molecular engineering, scientists have for the first time developed a gene editing tool capable of making targeted, single base pair changes in the DNA of mitochondria. The new editor, derived from a bacterial toxin, could allow researchers to better study mitochondrial diseases ahead of possible future treatments, Science reports.

While genome editing tools such as CRISPR can easily enter the nucleus of a cell, the mitochondria are swathed in membranes, making them inaccessible to bulky CRISPR molecules. Other tools such as TALENs and ZFNs have previously passed into the mitochondria of plant and animal cells, but STAT reports that these early tools were only able to cut out and remove mutated DNA, not correct it with targeted precision. Because of the difficulty in rewriting mitochondrial DNA, scientists have struggled to create animal models of mitochondrial diseases with the same mutations to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • amanda heidt

    Amanda Heidt

    Amanda was an associate editor at The Scientist, where she oversaw the Scientist to Watch, Foundations, and Short Lit columns. When not editing, she produced original reporting for the magazine and website. Amanda has a master's in marine science from Moss Landing Marine Laboratories and a master's in science communication from UC Santa Cruz.
Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Artificial Inc. Logo

Artificial Inc. proof-of-concept data demonstrates platform capabilities with NVIDIA’s BioNeMo

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development