New Report Dissects Ethics of Emerging Human Brain Cell Models

The National Academies’ report touches on ethical issues raised by new technologies such as brain organoids and human-animal chimeras, and suggests that current regulatory oversight is sufficient.

amanda heidt
| 4 min read
ethics, bioethics, brain organoid, chimera, cell transplant, Q&A, report, NIH, NAS, neuroscience, Techniques, disease & medicine, immunology, psychiatric conditions

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Brain organoid
NATIONAL INSTITUTES OF HEALTH/ VACCARINO LAB, YALE UNIVERSITY

Tens of millions of Americans suffer each year from neurological and psychiatric disorders. While scientists’ understanding of the human brain continues to advance, effective treatments remain hobbled by the models researchers use to study neurological diseases.

A report, released April 8 by the National Academies of Sciences, Engineering, and Medicine, considers the ethical considerations of three emerging models for studying the human brain: human neural organoids, cell transplants, and chimeras. Neural organoids are in-vitro, three-dimensional collections of human brain cells that mimic many features of the fetal brain. Both transplants and chimeras involve the introduction of human brain cells into nonhumans animals, but while transplants can be done during many phases of development, chimeras are created when human stem cells are injected into an animal very early in its development, such that they integrate more fully and grow in parallel ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • amanda heidt

    Amanda Heidt

    Amanda was an associate editor at The Scientist, where she oversaw the Scientist to Watch, Foundations, and Short Lit columns. When not editing, she produced original reporting for the magazine and website. Amanda has a master's in marine science from Moss Landing Marine Laboratories and a master's in science communication from UC Santa Cruz.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide