New Report Dissects Ethics of Emerging Human Brain Cell Models

The National Academies’ report touches on ethical issues raised by new technologies such as brain organoids and human-animal chimeras, and suggests that current regulatory oversight is sufficient.

Written byAmanda Heidt
| 4 min read
ethics, bioethics, brain organoid, chimera, cell transplant, Q&A, report, NIH, NAS, neuroscience, Techniques, disease & medicine, immunology, psychiatric conditions

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Brain organoid
NATIONAL INSTITUTES OF HEALTH/ VACCARINO LAB, YALE UNIVERSITY

Tens of millions of Americans suffer each year from neurological and psychiatric disorders. While scientists’ understanding of the human brain continues to advance, effective treatments remain hobbled by the models researchers use to study neurological diseases.

A report, released April 8 by the National Academies of Sciences, Engineering, and Medicine, considers the ethical considerations of three emerging models for studying the human brain: human neural organoids, cell transplants, and chimeras. Neural organoids are in-vitro, three-dimensional collections of human brain cells that mimic many features of the fetal brain. Both transplants and chimeras involve the introduction of human brain cells into nonhumans animals, but while transplants can be done during many phases of development, chimeras are created when human stem cells are injected into an animal very early in its development, such that they integrate more fully and grow in parallel ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • amanda heidt

    Amanda first began dabbling in scicom as a master’s student studying marine science at Moss Landing Marine Labs, where she edited the student blog and interned at a local NPR station. She enjoyed that process of demystifying science so much that after receiving her degree in 2019, she went straight into a second master’s program in science communication at the University of California, Santa Cruz. Formerly an intern at The Scientist, Amanda joined the team as a staff reporter and editor in 2021 and oversaw the publication’s internship program, assigned and edited the Foundations, Scientist to Watch, and Short Lit columns, and contributed original reporting across the publication. Amanda’s stories often focus on issues of equity and representation in academia, and she brings this same commitment to DEI to the Science Writers Association of the Rocky Mountains and to the board of the National Association of Science Writers, which she has served on since 2022. She is currently based in the outdoor playground that is Moab, Utah. Read more of her work at www.amandaheidt.com.

    View Full Profile
Share
Image of small blue creatures called Nergals. Some have hearts above their heads, which signify friendship. There is one Nergal who is sneezing and losing health, which is denoted by minus one signs floating around it.
June 2025, Issue 1

Nergal Networks: Where Friendship Meets Infection

A citizen science game explores how social choices and networks can influence how an illness moves through a population.

View this Issue
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Unraveling Complex Biology with Advanced Multiomics Technology

Unraveling Complex Biology with Five-Dimensional Multiomics

Element Bioscience Logo
Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Resurrecting Plant Defense Mechanisms to Avoid Crop Pathogens

Twist Bio 
The Scientist Placeholder Image

Seeing and Sorting with Confidence

BD

Products

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series

agilent-logo

Agilent Announces the Enhanced 8850 Gas Chromatograph

parse-biosciences-logo

Pioneering Cancer Plasticity Atlas will help Predict Response to Cancer Therapies