Imagine a bandage that could weave a wound back together near-instantaneously. Or a filter for cleaning toxic spills that could sense and adapt to its environment. These are just some of the applications that may be possible for materials built from living cells.
Engineered living materials (ELMs) can theoretically take on the properties of tissue, meaning they can grow and self-propagate. Previously, scientists have succeeded in engineering cells to come together into moldable materials, but it’s been challenging to precisely control and shape how they assemble without chemical modifications that may harm the cells.
While scientists been able to shape ELMs made of bacterial cells by sculpting biofilm-building proteins, directing eukaryotic cells to where they’re supposed to go has been more challenging. In a study published in Science Advances on November 4, scientists directed genetically engineered baker’s yeast (Saccharomyces cerevisiae) to assemble into ELMs. With the help of microscopic “tweezers,” ...



















