Questions Raised About Widely Used Blood-Brain Barrier Model

A study has sparked controversy by suggesting that cells made using a popular lab protocol have been misidentified, with potentially serious repercussions for brain research. Critics say the significance of the findings has been overstated.

| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

ABOVE: © ISTOCK.COM, UNOL

A well-known in vitro model of the blood-brain barrier that is widely used in studies of neurodegenerative diseases and in preclinical research is made from the wrong kind of cells, according to claims made in a PNAS paper this month (February 4).

Researchers report in the study that cells produced using a popular lab protocol, which involves reprogramming human pluripotent stem cells (hPSCs), show gene expression patterns typical of the epithelial cells coating human organs, rather than of the blood-brain barrier (BBB) endothelial cells they’re supposed to mimic.

The authors of the paper, which has fueled debate in the BBB research community since it was first posted as a preprint on bioRxiv in 2019, say that the findings raise serious questions about the value of the model in ongoing neuroscience and drug studies. Other researchers, including the designers of the protocol, tell The Scientist that the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Stem Cell Strategies for Skin Repair

Stem Cell Strategies for Skin Repair

iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo