Replacing Microglia Treats Neurodegenerative Disease in Mice

Researchers find a way to wipe out the brain’s immune cell corps and send in new and improved versions.

Written byShawna Williams
| 2 min read
Image of brain cells showing pyramidal neurons in green, astrocytes in red, and microglia in blue
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Some of today’s most cutting-edge treatments, from immunotherapy to gene editing, are based on the principle of swapping in more-functional versions of certain cell types or the genes within them. Now, in a study published yesterday (March 16) in Science Translational Medicine, researchers report they’ve achieved this in the mouse brain, clearing out a critical population of immune cells known as microglia and replacing them with new ones. Moreover, they say, this procedure led to an improvement in symptoms for mice with a neurodegenerative disease linked to microglial malfunction.

Though they’ve long received less attention than neurons, microglia play important roles in the brain, including clearing dead cells and defective proteins as well as shaping the formation of memories. Dysfunctional microglia have been linked to neurodegenerative diseases such as Alzheimer’s, making them an attractive therapeutic target.

In the new study, researchers set out to try to replace microglia. Some types ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Shawna was an editor at The Scientist from 2017 through 2022. She holds a bachelor’s degree in biochemistry from Colorado College and a graduate certificate in science communication from the University of California, Santa Cruz. Previously, she worked as a freelance editor and writer, and in the communications offices of several academic research institutions. As news director, Shawna assigned and edited news, opinion, and in-depth feature articles for the website on all aspects of the life sciences. She is based in central Washington State, and is a member of the Northwest Science Writers Association and the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH