Retching Mice Reveal the Brain Circuit Behind Vomiting

The discovery could one day lead to the development of better antinausea medications.

Written byKatherine Irving
| 2 min read
Circular clusters of <em>Staphylococcus aureus&nbsp;</em>drift on a blue background.
Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Nausea is a universally unwelcome feeling, but despite such widespread aversion, very little has been learned about the mechanism that causes an organism to vomit. That’s now changed with a report published yesterday in Cell that describes a neural pathway that purportedly controls retching in mice. The finding could lay the foundation for the development of new antinausea drugs, particularly for chemotherapy patients, according to a news release from the journal.

When someone eats food containing certain bacteria, the microbes generate toxins that are detected by the brain. The brain then induces a variety of defensive responses designed to get the toxins out of the body. These include retching and vomiting, the study authors write, as well as feelings of nausea, which they say teaches the host to avoid the contaminated food in the future. Although these toxin responses are typically useful for survival, they are also responsible for a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot of Katherine Irving

    Katherine Irving is an intern at The Scientist. She studied creative writing, biology, and geology at Macalester College, where she honed her skills in journalism and podcast production and conducted research on dinosaur bones in Montana. Her work has previously been featured in Science.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo