Stem Cells Made Waves in Biology and Medicine

Since their introduction to the lab, pluripotent stem cells have gone from research tool to therapeutic, but the journey has been rocky.

Written byKaren Zusi
| 6 min read

Register for free to listen to this article
Listen with Speechify
0:00
6:00
Share

TOP ROW: LUNAR CAUSTIC/FLICKR. MIDDLE ROW, L TO R: TONI BARROS/WIKIMEDIA COMMONS; RUBENSTEIN/FLICKR; NISSIM BENVENISTY/WIKIMEDIA COMMONS. BOTTOM ROW, L TO R: JOSEPH ELSBERND/FLICKR; KATHRIN PLATH LAB, UNIVERSITY OF CALIFORNIA, LOS ANGELES, VIA CIRM

Stem cell research was going strong by the late 1990s. Developmental biologists had been using human embryonal carcinoma (EC) cells at the bench since the mid-1980s, but work on embryonic stem cells (ESCs) and embryonic germ cells in the mouse had given researchers hope that they could derive pluripotent cells from humans that wouldn’t have the EC cells’ abnormal genomes. Leading up to the new millennium, a handful of researchers were working furiously toward this goal.

Restrictions to federal funding for human embryo research in the U.S. severely hindered efforts, but in November 1998, two labs supported by private funding from the Geron Corporation succeeded. James Thomson, a developmental biologist at the University of Wisconsin–Madison, and colleagues isolated and cultured stem cells from donated human ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH