Tweak to N Protein Makes Delta Variant More Infectious

Using a novel lab technique, researchers identified a mutation that allows the virus to insert more genetic material into host cells.

young woman smiling
| 2 min read
Isolated Realistic Coronavirus Covid-19 Molecule in a Biological Environment stock photo

© ISTOCK.COM, DIEGOIOPPOLO

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In a study published in Science yesterday, scientists report a mutation in the Delta variant of SARS-CoV-2 that enables it to infect cells more effectively than the original virus strain. Unlike many studies of SARS-CoV-2 variants that have focused on changes in the spike (S) protein, the researchers used a technique that allowed them to identify effects from tweaks to other viral proteins as well. In this case, they identified a mutation affecting the nucleocapsid (N) protein as responsible for the increased infectivity.

Specifically, the study, conducted by Nobel laureate Jennifer Doudna of the University of California, Berkeley, and her colleagues, found that a mutation called R203M in Delta’s N protein significantly increased how much viral RNA made it into host cells.

The research team adapted a tool known as a virus-like particle, which contains the virus’s proteins but not its genome, reports Science in an article about the study. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • young woman smiling

    Chloe Tenn

    Chloe Tenn is a graduate of North Carolina State University, where she studied neurobiology, English, and forensic science. Fascinated by the intersection of science and society, she has written for organizations such as NC Sea Grant and the Smithsonian. Chloe also works as a freelancer with AZoNetwork, where she ghostwrites content for biotechnology, pharmaceutical, food, energy, and environmental companies. She recently completed her MSc Science Communication from the University of Manchester, where she researched how online communication impacts disease stigma. You can check out more of her work here.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio