Wanted: Transcriptional Regulators

Researchers have designed a screen to find unique molecules, called riboswitches, that determine whether transcription will proceed.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

REVEALING RIBOSWITCHES: RNA is isolated from bacteria and tagged with a 3’ adapter, to which a complimentary oligonucleotide binds for reverse transcription and sequencing. Sequence analysis then reveals those transcripts that have been fully transcribed versus those prematurely truncated. The reproducible presence of similarly truncated transcripts for a given gene suggests the presence of a riboswitch in the mRNA.© GEORGE RETSECK

Nature has evolved a staggering array of mechanisms for regulating gene expression, but few are so simple and elegant as the riboswitch. These RNA elements sit within the 5’ noncoding regions of bacterial messenger RNAs (mRNA) and regulate an mRNA’s own transcription or translation, depending on the switch’s conformation. In the case of a transcription-regulating riboswitch, for example, association of the switch with a particular ligand, such as a metabolite, can alter the switch’s structure and in turn terminate transcription.

Since the first riboswitches were identified in the early 2000s, “most of the known riboswitches have been discovered pretty much one by one by sequence comparisons,” says RNA expert Thomas Hermann of the University of California, San Diego. But while that approach works well for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies