Wanted: Transcriptional Regulators

Researchers have designed a screen to find unique molecules, called riboswitches, that determine whether transcription will proceed.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

REVEALING RIBOSWITCHES: RNA is isolated from bacteria and tagged with a 3’ adapter, to which a complimentary oligonucleotide binds for reverse transcription and sequencing. Sequence analysis then reveals those transcripts that have been fully transcribed versus those prematurely truncated. The reproducible presence of similarly truncated transcripts for a given gene suggests the presence of a riboswitch in the mRNA.© GEORGE RETSECK

Nature has evolved a staggering array of mechanisms for regulating gene expression, but few are so simple and elegant as the riboswitch. These RNA elements sit within the 5’ noncoding regions of bacterial messenger RNAs (mRNA) and regulate an mRNA’s own transcription or translation, depending on the switch’s conformation. In the case of a transcription-regulating riboswitch, for example, association of the switch with a particular ligand, such as a metabolite, can alter the switch’s structure and in turn terminate transcription.

Since the first riboswitches were identified in the early 2000s, “most of the known riboswitches have been discovered pretty much one by one by sequence comparisons,” says RNA expert Thomas Hermann of the University of California, San Diego. But while that approach works well for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH