When Severed, This Solitary Tunicate Regrows as Three New Animals

While regeneration has long been the domain of colonial tunicates, a solitary species of sea squirt was able to regenerate into multiple, fully functional individuals within a month of being cut up.

Written byAmanda Heidt
| 4 min read
An underwater photo of the solitary tunicate Polycarpa mytiligera growing on a coral in the Red Sea

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: The solitary tunicate Polycarpa mytiligera (center) growing on a yellow coral
TAL ZAQUIN

Ascidians, marine invertebrates more commonly known as tunicates or sea squirts, come in two flavors: solitary or colonial. Colonial species are known for their extensive ability to rebuild damaged tissue and even generate entirely new individuals through budding, while solitary species have long been thought to be much more limited in what they can regrow. A study published April 15 in Frontiers in Cell and Developmental Biology has documented for the first time the ability of a solitary tunicate to generate as many as three new individuals in response to amputation.

Tal Gordon, a marine biologist at Tel Aviv University in Israel who completed this work as part of her dissertation (she’s now a postdoc at the same institution), has been studying the tunicate Polycarpa mytiligera since her undergraduate research, and it was during that time when ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • amanda heidt

    Amanda first began dabbling in scicom as a master’s student studying marine science at Moss Landing Marine Labs, where she edited the student blog and interned at a local NPR station. She enjoyed that process of demystifying science so much that after receiving her degree in 2019, she went straight into a second master’s program in science communication at the University of California, Santa Cruz. Formerly an intern at The Scientist, Amanda joined the team as a staff reporter and editor in 2021 and oversaw the publication’s internship program, assigned and edited the Foundations, Scientist to Watch, and Short Lit columns, and contributed original reporting across the publication. Amanda’s stories often focus on issues of equity and representation in academia, and she brings this same commitment to DEI to the Science Writers Association of the Rocky Mountains and to the board of the National Association of Science Writers, which she has served on since 2022. She is currently based in the outdoor playground that is Moab, Utah. Read more of her work at www.amandaheidt.com.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems