Base Editing Now Able to Convert Adenine-Thymine to Guanine-Cytosine

With the arrival of a new class of single-nucleotide editors, researchers can target the most common type of pathogenic SNP in humans.

| 9 min read

Register for free to listen to this article
Listen with Speechify
0:00
9:00
Share

ISTOCK, BEHOLDINGEYEBase editing is a relatively recent genome-editing technique that swaps one DNA base pair for another, offering researchers the potential to correct harmful, single-nucleotide mutations in the human genome. But current classes of base editors only allow the conversion of cytosine-guanine (C-G) base pairs to thymine-adenine (T-A) base pairs, rendering a substantial proportion of such mutations un-targetable with this approach.

Now, researchers at Harvard University have designed a new class of adenine base editors (ABEs) that can efficiently turn A-T into G-C, opening up the majority of pathogenic point mutations for editing. The team reported its findings today (October 25) in Nature.

“It’s a very elegant study,” says Andrew Bassett, head of research in cellular operations at the Wellcome Trust Sanger Institute, who was not involved in the work. “Being able to extend [base editing] to other types is really quite important.”

Traditional CRISPR-Cas9 genome editing makes a double-stranded break in DNA in order to introduce insertions or deletions at targeted sites. But making this break can lead to a substantial number of errors at the target site, such as the random insertion or deletion ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours