Gene Editing Without Foreign DNA

Scientists perform plant-genome modifications on crops without using plasmids.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PLASMID-FREE EDITING: To mutate a specific gene of interest in a plant (lettuce shown here), scientists first grow protoplasts—plant cells lacking a cell wall (1). Preassembled CRISPR complexes, including a tailor-made stretch of guide RNA and the nuclease Cas9, are introduced into the protoplasts (2). The complex homes in on the target gene and cuts the DNA at a locus specified by the guide RNA (3). Protoplasts are then grown in clumps called calli (4), which are regenerated into a mature, genetically modified specimen (5).
View image larger: WEB
© GEORGE RETSECK; WIKIMEDIA COMMONS
The ongoing quest to increase the yield of crops and produce varieties resistant to disease, drought, and pests has been aided by the development of gene-editing technologies. These days, probably the most commonly used gene-editing approach in labs is the CRISPR/Cas9 system, in which a guide RNA—specially designed to match part of the sequence of a target gene—positions the Cas9 nuclease at that gene, enabling it to chop the DNA.

To date, researchers have been using DNA plasmids, both naked and inside infecting bacteria, to transfer Cas9 and guide RNAs into plant tissues and cells. However, says geneticist Jen Sheen of Harvard Medical School, this approach runs the risk of creating additional mutations—either from the integration of the plasmid itself into the plant genome, or from the persistence of the encoded gene-editing factors, which can “continue to make mutations.”

Sunghwa Choe of Seoul National University and colleagues have therefore devised a technique that avoids the use of plasmids altogether. They preassemble the Cas9 protein and guide RNA complex in vitro and then mix the complex with polyethylene glycol, which allows direct transfer by endocytosis into protoplasts—plant cells that have had their cell walls removed.

The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo