Gene Editing Without Foreign DNA

Scientists perform plant-genome modifications on crops without using plasmids.

Written byRuth Williams
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PLASMID-FREE EDITING: To mutate a specific gene of interest in a plant (lettuce shown here), scientists first grow protoplasts—plant cells lacking a cell wall (1). Preassembled CRISPR complexes, including a tailor-made stretch of guide RNA and the nuclease Cas9, are introduced into the protoplasts (2). The complex homes in on the target gene and cuts the DNA at a locus specified by the guide RNA (3). Protoplasts are then grown in clumps called calli (4), which are regenerated into a mature, genetically modified specimen (5).
View image larger: WEB
© GEORGE RETSECK; WIKIMEDIA COMMONS
The ongoing quest to increase the yield of crops and produce varieties resistant to disease, drought, and pests has been aided by the development of gene-editing technologies. These days, probably the most commonly used gene-editing approach in labs is the CRISPR/Cas9 system, in which a guide RNA—specially designed to match part of the sequence of a target gene—positions the Cas9 nuclease at that gene, enabling it to chop the DNA.

To date, researchers have been using DNA plasmids, both naked and inside infecting bacteria, to transfer Cas9 and guide RNAs into plant tissues and cells. However, says geneticist Jen Sheen of Harvard Medical School, this approach runs the risk of creating additional mutations—either from the integration of the plasmid itself into the plant genome, or from the persistence of the encoded gene-editing factors, which can “continue to make mutations.”

Sunghwa Choe of Seoul National University and colleagues have therefore devised a technique that avoids the use of plasmids altogether. They preassemble the Cas9 protein and guide RNA complex in vitro and then mix the complex with polyethylene glycol, which allows direct transfer by endocytosis into protoplasts—plant cells that have had their cell walls removed.

The ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA