How the Gut Differentiates Artificial Sweeteners from Sugars

Signals from sweeteners and sugars are relayed from the gut to the brain by different neural pathways, a new study concludes.

young woman smiling
| 5 min read
Variety of sweeteners - Stevia, sugar, pollen and honey stock photo
Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

Humans have a sugar sense. Animals and humans prefer sugar over artificial sweeteners in experiments, and that could be because a specific gut sensor cell triggers one of two separate neural pathways depending on which it detects, researchers suggest in a January 13 study in Nature Neuroscience.

“It has been known for decades that animals prefer sugar to non-caloric sweeteners and that this preference relies on feedback from the gut,” Lisa Beutler, a Northwestern University endocrinologist who researches the connection between the gut and brain and was not affiliated with the new work, writes in an email to The Scientist. “This study is among the first to provide insight at the molecular level into how the gut knows the difference between sugar and non-caloric sweeteners, and how this drives preference.”

The study builds on previous research from the lab of Duke University gut-brain neuroscientist Diego Bohórquez. In 2015, Bohórquez established ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • young woman smiling

    Chloe Tenn

    Chloe Tenn is a graduate of North Carolina State University, where she studied neurobiology, English, and forensic science. Fascinated by the intersection of science and society, she has written for organizations such as NC Sea Grant and the Smithsonian. Chloe also works as a freelancer with AZoNetwork, where she ghostwrites content for biotechnology, pharmaceutical, food, energy, and environmental companies. She recently completed her MSc Science Communication from the University of Manchester, where she researched how online communication impacts disease stigma. You can check out more of her work here.

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo